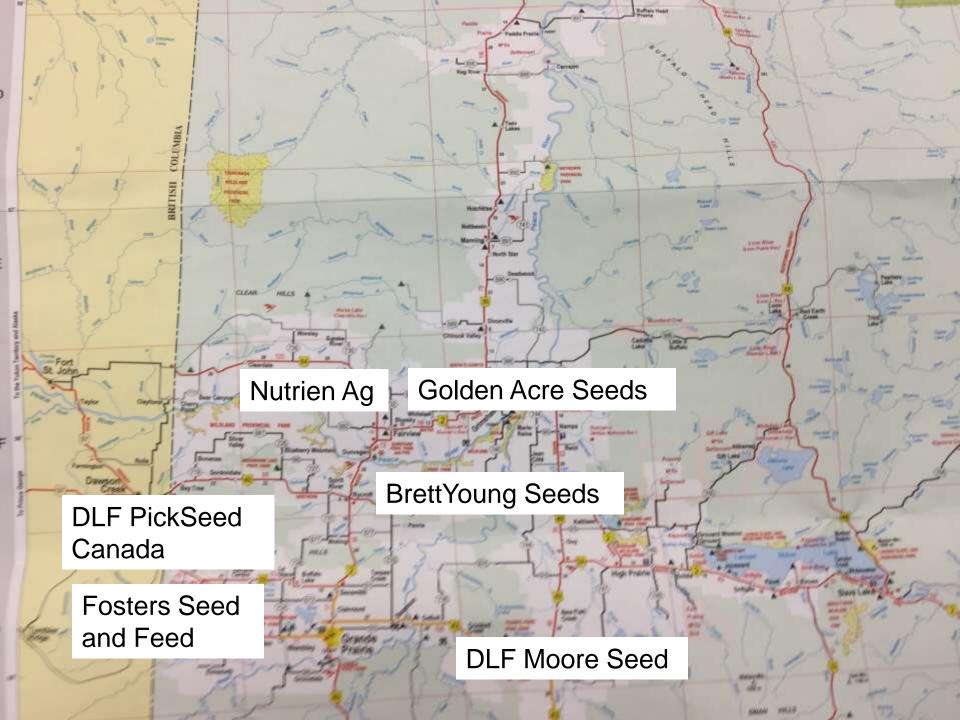


Peace Region Grass and Legume Seed Research

- Herbicide tolerance trials on grasses and legumes
- Growth regulators on grasses and clover
- Weed control and fungicide studies
- Fertility studies
- Clover desiccation trials
- Insect surveys
- Grass seed testing trial

Research Staff and Resources in the Peace


- Nitya Khanal Seed Production Program, AAFC
- Jennifer Otani Entomolgist, AAFC
- Calvin Yoder, AAF
- Talon Gauthier, PRFSA
- Peace Region Forage Seed Association (www.peaceforageseed.ca)

Turf and Forage Seed In The Peace River Region (AB and BC)

		,
YEAR	Seed Sold million lbs	Farm Gate Value million \$
2008	80.6	45.4
2009	51.0	27.1
2010	41.8	20.0
2011	55.1	29.3
2012	50.9	32.5
2013	49.5	37.4
2014	52.7	40.3
2015	54.8	45.5
2016	48.8	43.7
2017	61.6	55.5

Herbicide Tolerance Trials and Minor Use Process

Identify Potential Products and Weed Issues

Priorize List With AB, Sask and Manitoba

Conduct Tolerance Trials

Submit Reports to PPMUC

Minor Use Submitted

Product Approved

Residue Data

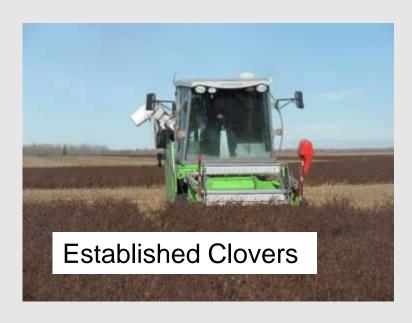
Minor Use Priority Setting Meeting in Ottawa

AAFC Pest Management Centre

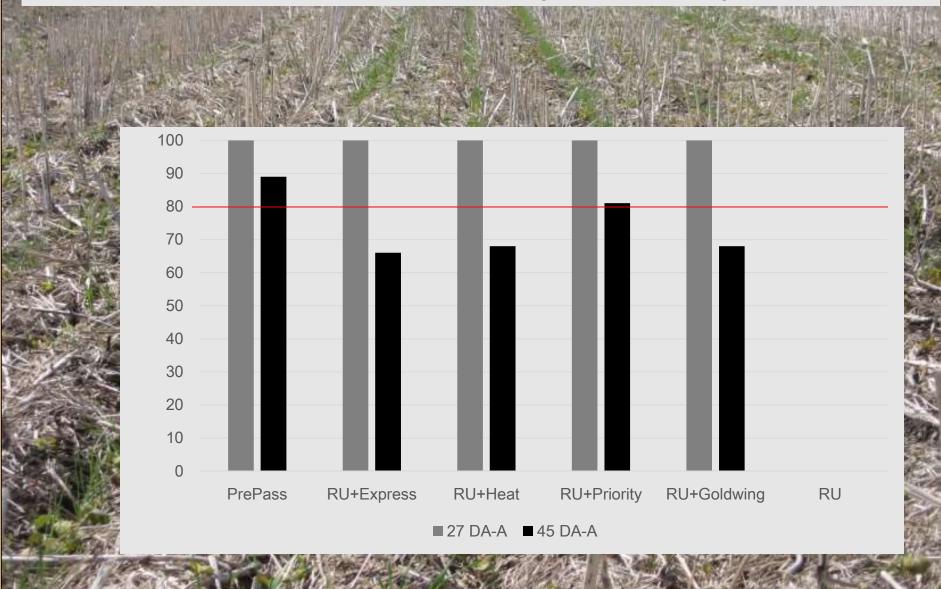
Trials Conducted

Minor Use Submitted

Product Approved


Add Additional Species

Herbicide Tolerance Trials on Forage Seed Crops


Herbicide Tolerance Trials on Grass and Legume Seed Crops

- Test new herbicides on grass and legume seed crops
- Apply 1 and 2 x recommended rate used in annual crops
- Small plot replicated trials
- Collect seed and dry matter yield
- Collect 1000 kwt and germination on established trials.
- Usually need a minimum of 3-4 trials to submit for a minor use registration
- Co-ordinate trials and data with Sask. and Manitoba

<u>Pre-seed</u> Herbicides When Direct Seeding GRASSES Into Stubble

- Glyphosate alone
- Glyphosate+MCPA or 2,4-D
- PrePass XC
 - Minor Use Registration on creeping red fescue, timothy, smooth bromegrass and meadow bromegrass. Submission made to add crested wheatgrass and meadow fescue.
- Glyphosate+Express SG
 - Minor Use Registration on creeping red fescue, timothy, smooth bromegrass and meadow bromegrass. Submission made to add crested wheatgrass, slender wheatgrass, meadow fescue, tall fescue and hybrid bromegrass.
- Heat (saflufenacil)+Roundup
 - Minor Use Registration on Bromegrasses, timothy and creeping red fescue.
- Initiated tolerance trials in 2016, 2017 and 2018 using HotShot (florasulam+bromoxynil) and Goldwing (pyraflufan+MCPA ester) tank mixed with glyphosate as pre-seed prior to seeding grasses.
- Tested ai pyroxasulfone applied prior to seeding grasses. High level of damage.

% Control of RR Canola Applied Prior to Seeding Smooth Bromegrass, Falher 2018.

Visual % Control of RR CANOLA Following Applications of Herbicides Applied Prior to Seeding Grasses

			Carried Control		Mana in
Treatment	Webster 2014	Grimshaw 2010	Falher 2008	Baldonnel 2008	Blueberry 2004
Glyphosate	0	0	0	0	0
Heat+Glyphosate 1x	78	41	N/A	N/A	N/A
Heat+Glyphosate 2x	88	N/A	N/A	N/A	N/A
Expess+Glyphosate	69	65	80	90	63
MCPA ester+ Glyphosate 1x	81	64	85	88	63
Pre-Pass <	95	95	93	100	98
2,4-D + Glyphosate	N/A	N/A	82	80	N/A

Broad-leaved Herbicides on SEEDLING Grasses

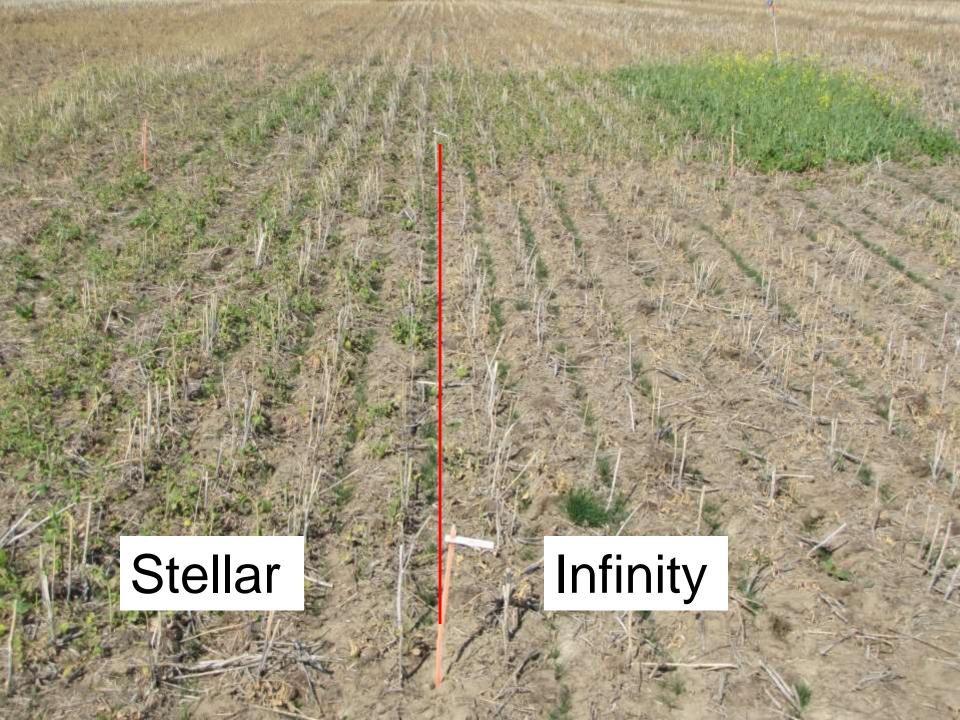
- MCPA ester*
- Lontrel*
- Buctril M*
- Attain*
- Curtail M
- Prestige XC*
- Refine SG (CRF only)
- Spectrum*
- Infinity*
- * Minor Use Registration

Minor Use Applications Submitted

Stellar (8 grass species)

Selected Minor Use Priority (AAFC)

- Enforcer M on Smooth bromegrass
- Pixxaro on Timothy (2016)
- Cirpreme XC on Timothy (2018)


Collecting Data

- Paradigm (halauxifen/florasulam) +MCPA ester on 7 grasses
- Pixxaro (halauxifen/fluroxypyr/MCPA) on 7 grasses
- Enforcer M on 7 grasses
- Infinity FX and Infinity FX+MCPA ester on 7 grasses

Weed Control With Several Herbicides Applied to Seedling Grass Seed Stands 2016 and 2017

Methods

- 2016 on seedling meadow bromegrass (Rycroft) and 2017 on seedling creeping red fescue (Hythe)
- Herbicides applied at 2-5 leaf stage
- Visual % weed control ratings taken 10 -14 DA-A and 30 DA-A
- Weeds: Volunteer canola, wild buckwheat, lamb's quarters, cleavers, hemp-nettle, narrow-leaved hawks'beard.
- Treatments
 - Check
 - Refine SG
 - Stellar
 - Enforcer M
 - Infinity + AS
 - Infinity FX
 - Infinity FX+MCPA ester
 - Pixxaro
 - Paradigm+MCPA ester

SUMMARY TO DATE ON WEED CONTROL IN SEEDLING GRASS SEED STANDS

- All products tested to date are generally decent and have good control of annual weeds.
- Infinity FX and Infinity FX+MCPA ester show good activity on a wide range of annual weeds. Works quickly on weeds but some weeds do out grow some of the initial damage. May also see some leaf burn on seedling grasses but they outgrow it quickly.
- Stellar is a nice option. If PrePass was used prior to seeding may want to consider herbicides without florasulam.
- Infinity FX, Stellar, Paradigm+MCPA ester and Pixxaro quite good on cleavers. Paradigm and Pixxaro also good on big cleavers.
- Long term fescue growers should avoid Refine SG on seedling stands.
 Consider other herbicides without Group 2 actives eg. Group 2 resistant NLHB
- If horsetail is present consider herbicides containing MCPA ester.

Grassy Weed Herbicides on SEEDLING Grasses

Creeping Red Fescue

- Achieve Liquid*
- Assure II*
- Poast Ultra*
- Horizon
- Axial**
- Puma

Bromegrasses

- Achieve Liquid*
- Puma*
- Axial**

*Minor Use Registration
** Minor Use Submitted

Wheatgrasses

- Achieve Liquid*
- Puma*

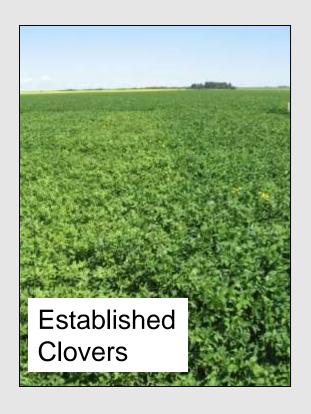
Perennial Ryegrass

- Puma Advance*

Tall Fescue

- Puma*

Meadow Fescue


- Puma

Timothy

- Nothing

Herbicide Tolerance Trials on Established Grass and Legume Seed Crops

- Test new herbicides on grass and legume seed crops
- Apply 1 and 2 x recommended rate used in annual crops
- Small plot replicated trials
- Collect seed yield, 1000 kwt and germination.
- Usually need a minimum of 3-4 trials to submit for a minor use registration
- Co-ordinate trials and data with Sask. and Manitoba

Update on Tolerance of Grass And Legume Seed Crops to Herbicides March 2017

Calvin Yoder, Forage Specialist Alberta Agriculture and Forestry Spirit River, AB Phone# (780) 864-3879 E-Mail:calvin.yoder@gov.ab.ca

The following is information on tolerance of grass and legume seed crops to herbicides that are applied at the recommended rate used in cereal, oilseed or pulse crops. Please note the information provided is a summary of products registered and products that show potential. The products that show potential are not registered. These products are currently being tested but results are limited at this point in time. The information is to be used as a guide only and is the information available at the time of printing. The authors involved in summarizing this information cannot be held responsible for publication errors or any consequences resulting from the use of this summary. Consult product labels for final detailed instruction before using any product.

Herbicides on Creeping Red Fescue for Seed Production SEEDLING (0-3 months after seeding)

Broadleaved Weed Herbicides		Grassy Weed Herbicides		
Registered	Potential	Registered	Potential	
Attain Banvel II (alone or with 2.4-D or MCPA) Basagran Buctril M Embutox 625** Infinity Loutrel MCPA Pardner Prestigs XC Refine SG Spectrum Targes** 2.4-D Tropotox Phs	Curtail M DyVel DS Enforcer M Frontline XL Frontline 2,4-D Infinity FX Paradigm Pixxaro Stellar* Target** Trophy	Achieve I Assure II Avenge 200-C Poast Ultra	Axial Horizon Puma 120 Super	

Notes

- Ally should not be recommended for use on seedling creeping red fescue.
- -2.4-D applications in the fall (September) of the seedling year can result in 25-50% yield loss the following year.
- Select, Everest, Simplicity and Velocity can cause extensive damage to seedling creeping red fescus
 and should not be recommended.
- Enforcer M, Paradigm, Pixxare and Infinity FX have shown good telerance on seedling creeping red feacuse in trials conducted to date.

ESTABLISHED (spring applications)

Broadleaved Weed Herbicides		Grassy Weed Herbicides		
Registered	Potential	Registered	Potential	
Ally Attain Banvel II Banvel II Banvel II Banvel II Banvel II Banvel II Banvel Infinity Loutrel MCPA Prestige XC PP 23235 Spectrum 2,4-D Refine SG	Barricade Curtail M Enforcer M Frontline XL Stellar* Trophy	Assure II Assure II+Ally Poast Ultra		

Notes

- Spring applications of 2,4-D or Banvel can sometimes cause injury to creeping red fescue.
- Some tank mixes of a broadleaf herbicide and Assure II may result in reduced grassy weed control.
- -Select causes extensive damage to established creeping red fescue and should not be recommended.
- Spring applications of quinclorac on established creeping red fescue have resulted in seed yield loss without visual damage.
- Equinox applied to established creeping red fescue reduced seed yields.

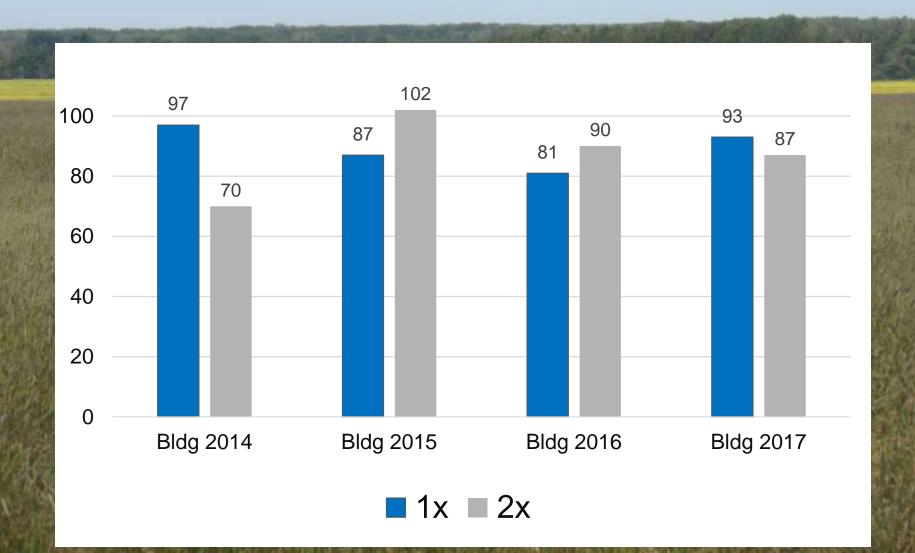
3

^{*}Minor Use Proposal Submitted **Registered For Forage Production

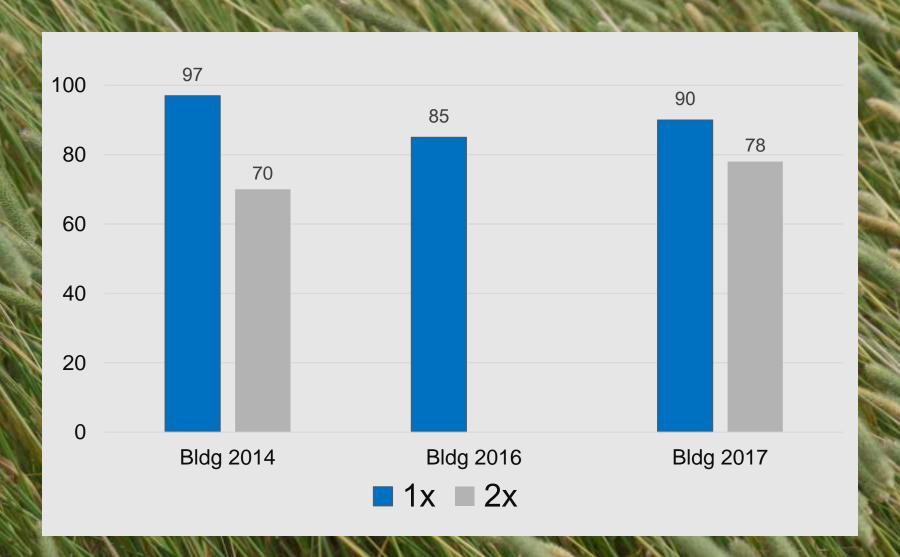
Herbicides on Established Timothy

Broadleaved Herbicides

Registered
Attain
Buctril M
Curtail M
Infinity
Frontline XL
Lontrel
MCPA
Prestige XC
Spectrum
2,4-D


Minor Use Submitted Stellar

Minor Use Priority (PMC)
Pixxaro
Cirpreme XC


Collecting Data
Paradigm+MCPA ester
Pixxaro
Cirpreme XC

Tolerance of Established Timothy to Pixxaro (% of Check)

Tolerance of Established Timothy to Paradigm+MCPA (% of Check)

Herbicides on Established Bromegrasses

Broadleaved Herbicides

Registered

Attain

Infinity

Lontrel

MCPA

Prestige XC

Spectrum

2,4-D

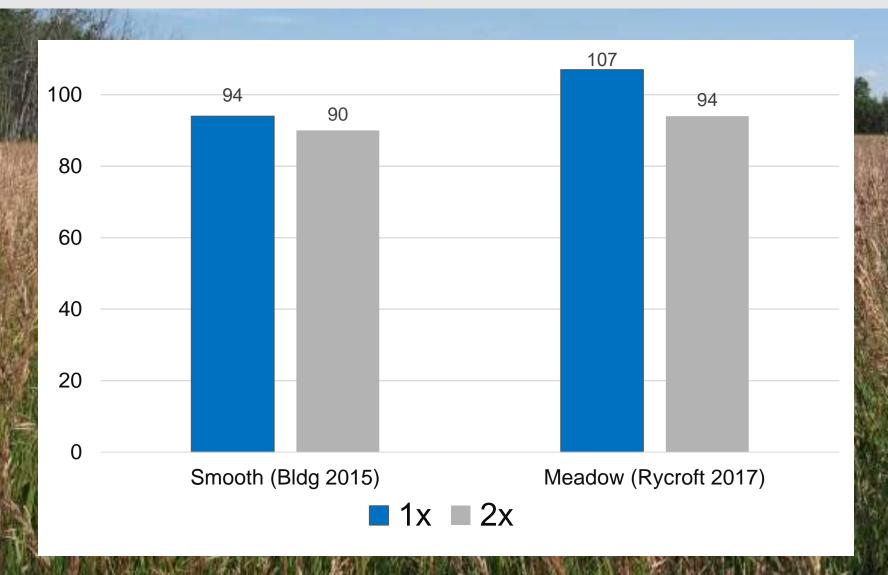
Minor Use Submitted

Stellar

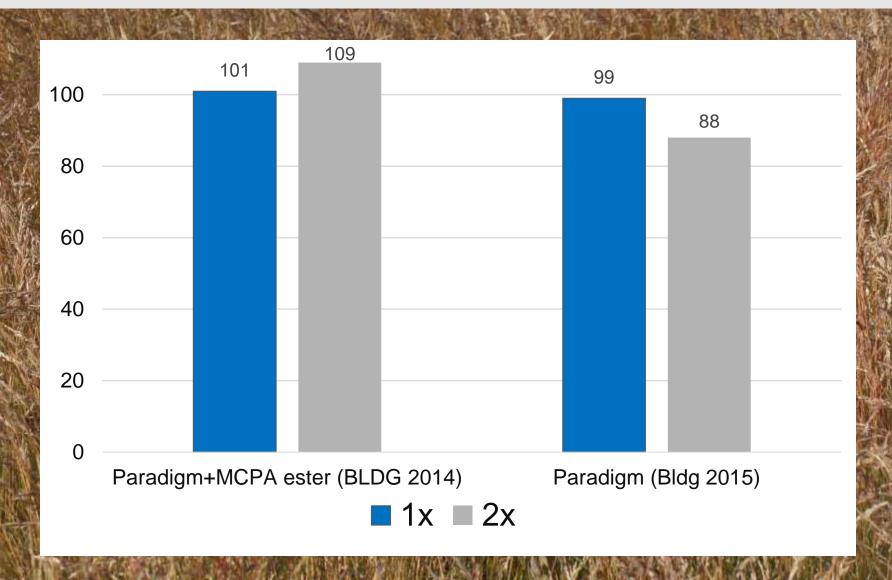
Minor Use Priority (PMC)

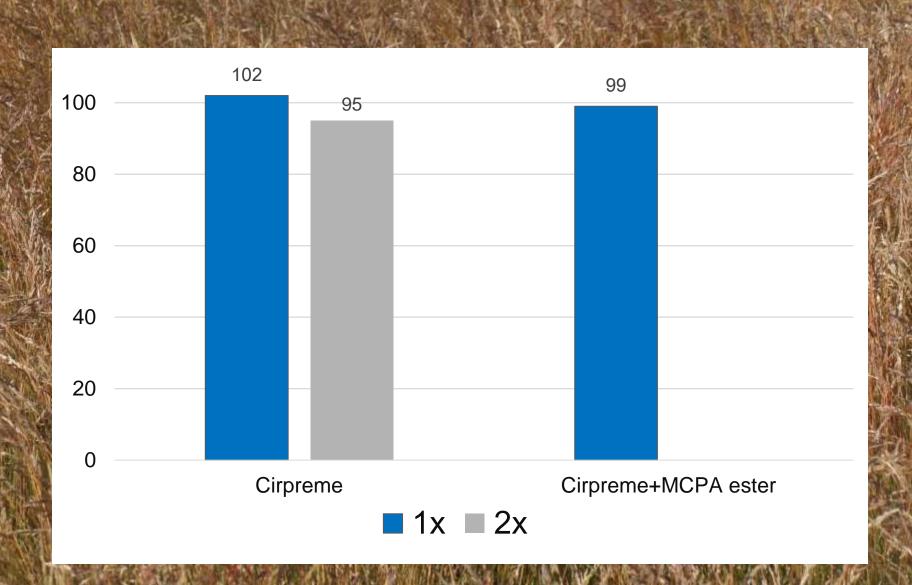
Enforcer M

Collecting Data


Paradigm+MCPA ester

Pixxaro


Cirpreme


Tolerance of Established Bromegrass to Pixxaro (% of Check)

Tolerance of Established Smooth Bromegrass to Paradigm (% of Check)

Tolerance of Established Meadow Bromegrass to Cirpreme and Cirpreme+MCPA ester (% of Check), 2018

Established Perennial Ryegrass

Broadleaved Herbicides

Registered

Infinity

MCPA

Spectrum

2,4-D

Minor Use Submitted

Collecting Data

Grassy Weed Herbicides

Registered

Puma Advance EC Assert 300 EC

Established Crested Wheatgrass

Broadleaved Herbicides

Registered

Ally

Attain

Lontrel

MCPA

Prestige XC

Refine SG

Spectrum

2,4-D

Minor Use Submitted

Collecting Data

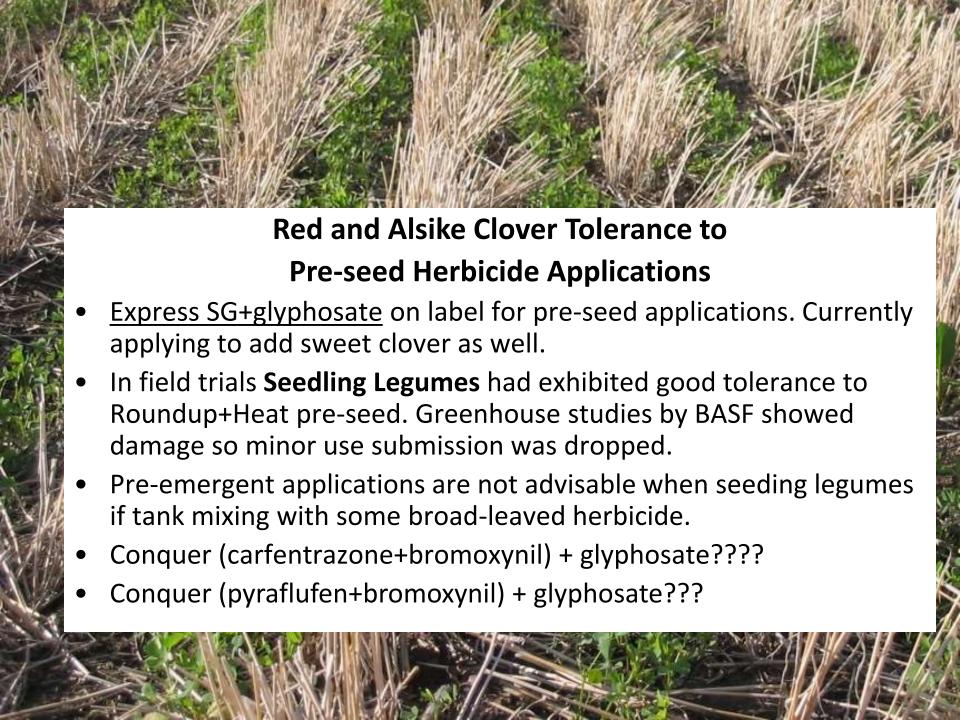
Potential Grassy Weed Herbicides

Achieve L

Fall Weed Control on Grass Seed Stands

- Dandelions, clovers, narrow-leaved hawks'beard, winter annuals, Canada thistle?.

Fall Applied Herbicides


- Ally timothy and creeping red fescue.
- Prestige XC
- Curtail M
- Spectrum
- Cirpreme???

Herbicide options and weed control ratings for fall spraying of creeping red fescue seed fields.

Herbicide	NLHB**	NLHB** (group 2 resistant)	Volunteer Clover	Dandelion	Canada Thistle	Rough Cinquefoil
Curtail M	Excellent	Excellent	Excellent	Poor	Poor to Fair	Excellent
Prestige	Excellent	Excellent	Excellent	Fair	Poor to Fair	Excellent
Spectrum	Excellent	Good	Excellent	Very Good	Poor to Fair	Fair
Ally	Excellent	Poor	Very Good	Excellent	Poor	Poor

^{*}E=Excellent G=Good F=Fair P=Poor

^{**}narrow-leaved hawks'beard

Minor Use Registrations for Herbicides on SEEDLING Clover

Alsike Clover

- Basagran Forte
- Embutox
- Odyssey
- Tropotox Plus
- Achieve Liquid
- Assure II
- Poast Ultra
- Viper ADV*
- Axial*
- Puma Advance**
- Horizon**
- Solo

Red Clover

- Basagran Forte
- Embutox
- Odyssey
- MCPA amine
- Tropotox Plus
- Achieve Liquid
- Assure II
- Viper ADV*
- Axial*
- Poast Ultra**
- Puma Advance**
- Horizon**
- Solo

Sweet Clover

- Achieve Liquid
- Poast Ultra
- Assure II
- Odyssey
- Viper ADV*
- Basagran Forte**
- Puma Advance**
- Axial**
- Horizon**

*In the process of Minor Use Registration

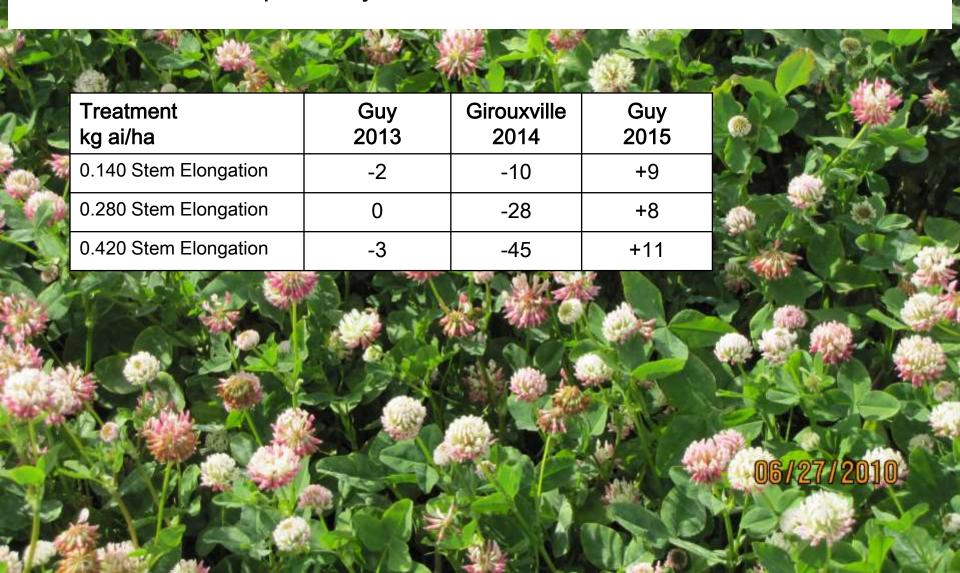
** Potential to register

Herbicides on ESTABLISHED Clovers Red Clover Alsike Clover - Basagran Forte* Basagran Forte* Viper ADV* - Viper ADV* - MCPA amine* - Assure II* - Assure II* - Poast Ultra* - Poast Ultra **Sweet Clover** - Basagran Forte* - Viper ADV - Assure II* - Poast Ultra Viper+AssureII Tank Mix ??? *Registered As A Minor Use

Plant Growth Regulators on Red and Alsike Clover

- Trinexapac-ethyl (TE) applied at stem elongation increased red clover seed yields by up to 34% in Norway (Øverland and Aamalid, 2007).
- TE has increased red clover seed yield under Oregon, and New Zealand conditions by 9 to 16% (Anderson, et. al. 2015).
- Reduction of canopy height, increase in flowers and earlier maturity.
- Parlay (TE) registered in Canada on perennial ryegrass grown for seed production.

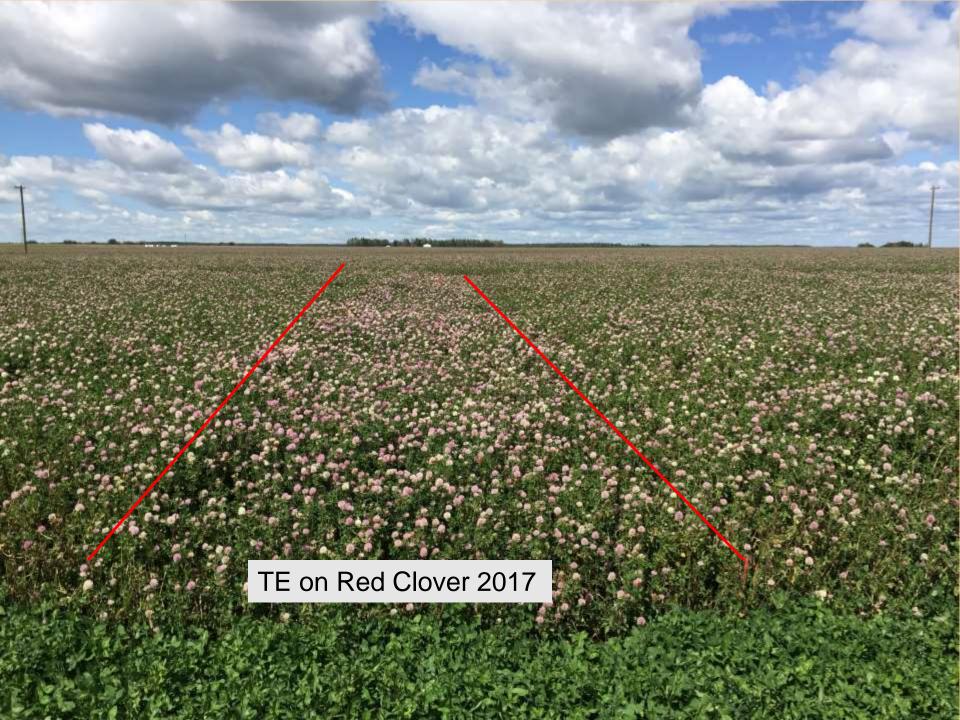
- Alsike and red clover seed fields
- Small plot replicated (2m x 40 m and 4 reps)
- Plant heights, flower counts, seed yield, 1000 kwts and germination.



Effects of Trinexapac-ethyl on Red Clover Seed Yields % of Check

Treatment (kg ai/ha)	Beaverlodge 2013	Girouxville 2013	Girouxville 2014	Girouxville 2015
0.140 Stem Elongation	+27	+18	0	+3
0.280 Stem Elongation	+10	+19	-31	+4
0.420 Stem Elongation	+38	+13	-36	+8

Red Clover – Girouxville 2014



TE (trinexapac-ethyl) and CCC (chlormequat chloride) Mixtures

- Response of TE is generally stronger on grass seed crops than CCC (Manipulator).
- Studies conducted in New Zealand showed tank mixes of TE and CCC were very effective at increasing grass seed yields.
- Studies conducted in Oregon in 2015 showed the tank mixes of TE and CCC were effective at reducing lodging and increasing seed yields of tall fescue.
- Trials were conducted in the Peace River Region in 2017 and 2018 to evaluate the effects of TE, CCC and TE+CCC on 3 grasses and 1 clover seed crop.

Effect of TE and CCC on Red Clover Seed Crop, Guy 2017

Treatments kg ai/ha	Height cm	Lodging 0-10*	Flower Counts flowers per 1/4m2	Seed Yield kg/ha	Germ. %	Seed Wt. g/1000
TE 0.140	87.2	10	272	412 a	75.0	1.900
TE 0.280	83.9	10	306	398 a	72.0	1.736
TE 0.140+ CCC 0.588	87.4	10	274	372 ab	71.0	1.768
CCC 1.116	89.2	10	264	304 b	75.8	1.758
Check	90.1	10	244	294 b	68.3	1.758
CV%	3.5	0	12.3	9.7	6.2	3.1
LSD P=.05	NSD	NSD	NSD	65	NSD	NSD

Means followed by the same letter do not significantly differ (P=.05 Student-Newman-Keuls)

^{*(10} Is No Lodging)

Growth Regulators on Grass Seed Crops

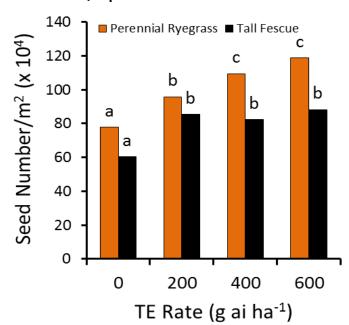
- Trinexapac-ethyl (TE) commonly used on grass seed crops in Oregon, Denmark and New Zealand.
- Shortens internodes which reduces lodging and improves pollination, seed set and harvesting.
- Increases seeds/spikelet and seeds/m2.
- Leads to increases in seed yields.
- Parlay (trinexapac-ethyl) Syngenta product distributed by BrettYoung Seeds is registered in Canada on perennial ryegrass for seed ONLY.
- TE is expected to be registered on wheat in 2019.

PARLAY

- Trinexapac-ethyl 11.3%
- Syngenta product but distributed by Brett Young Seeds.
- Registered in Canada on Turf Type Perennial Ryegrass for Seed
- Rate: .700 to 1.4 l/acre.
- Cost is \$47.00/litre
- Cost per acre range \$33 to \$66/acre.
- Stage: Zadoks growth stage 32 when the 2nd node is visible (stem elongation phase). Stage does vary among species.
- Trinexapac-ethyl is expected to be registered on wheat in the near future.

Grass Seed Production

Perennial Rye Grass



Plant Growth Regulators Trinexapac-ethyl treated

- Spike Length = 18.8 cm
- Spikelets/Spike = 22.3
- Seeds/Spike = 48.3

Untreated

- Spike Length = 21.6 cm
- Spikelets/Spike = 23.0
- Seeds/Spike = 40.8

Effect of trinexapac-ethyl (TE) on perennial ryegrass spike morphology (Chastain et al, 2003)

Slide Prepared by Nicole Anderson, Oregon State University

Effect of Trinexapac-ethyl (TE) on Peace Region Grass Seed Crops

- 2015, 2016, 2017 trials conducted at AAFC Beaverlodge.
- Small plot (2 x 10 m) RCB with 4 replicates
- 3 rates x 2 stages of application
- Grasses received fall nitrogen application.
- Also included early spring applied UAN with and without TE.
- Conducted on 1st and 2nd years stands of creeping red fescue, timothy and meadow bromegrass.

TE on Grasses Treatment List

Trea	tment	Rate kg ai/ha	Stage	UAN (spring applied)	Cost \$/acre**
1		0.200	2 Nodes		33
2		0.300	2 Nodes		50
3		0.400	2 Nodes		67
4		0.200	Heading		33
5		0.300	Heading		50
6		0.400	Heading		67
7		0.300 + UAN	2 Nodes	40 lbs of N/acre*	82
8		0.300 + UAN	Heading	40 lbs of N/acre*	82
9		UAN		40 lbs of N/acre*	32
10		Check			

*50 l/acre of UAN **2016 prices

TE on Grass Seed Crops- SUMMARY (2015-2017)

- TE reduced plant height and lodging in timothy and meadow bromegrass.
- Largest seed yield response in timothy. TE increased seed yields by 50% in 2015 and 30% in 2016 and 0% in 2017.
- Additional Spring UAN generally resulted in lodging of the crop and sometimes a seed yield reduction particularly in creeping red fescue.
- No significant response to additional Spring UAN applications with or without TE but a slight trend for Spring UAN+TE to be one of the higher yielding treatments in timothy and meadow bromegrass.
- Little impact using TE on creeping red fescue seed crops in trials to date.
- TE appears to have more potential for use on first year stands.
- TE had no affect on germination or seed weight.
- Concern on possible damage to the crops if conditions are dry.

TE + CCC on Meadow Bromegrass, Rycroft, 2017+2018

TE + CCC on Meadow Bromegrass (Rycroft 2017and 2018)

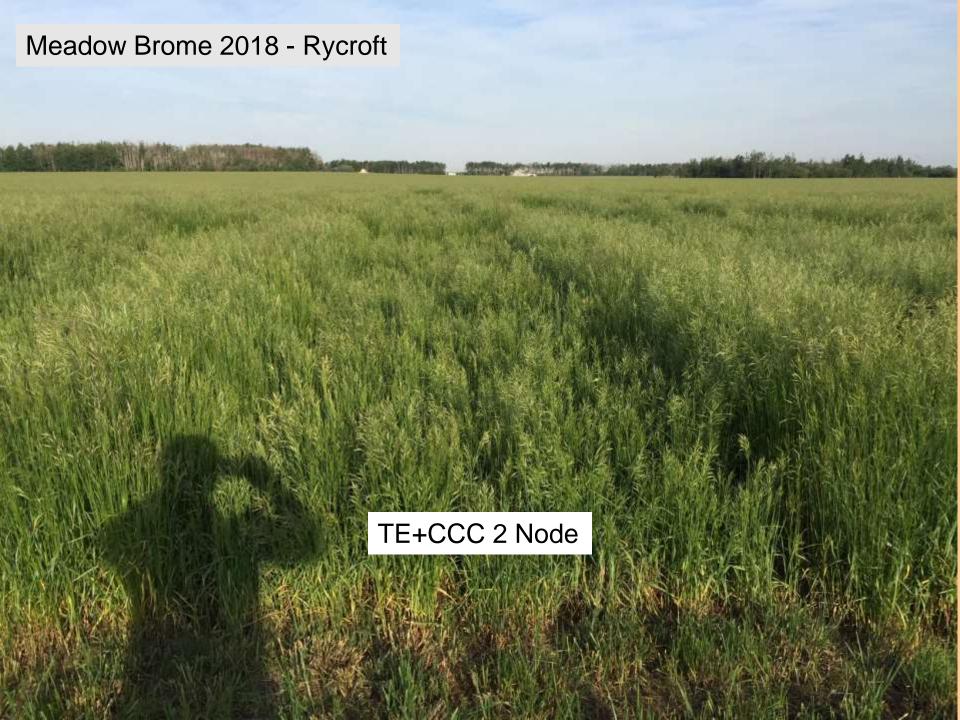
- Seeded in 2016.
- Very uniform stand with high nitrogen fertility.
- Plot size was 2 x 10 m, RCB with 4 reps.
- DATA COLLECTED: Plant height, lodging, head length, seed yield, dockage, 1000 kwt and seed germination. Harvest area 17 m2.

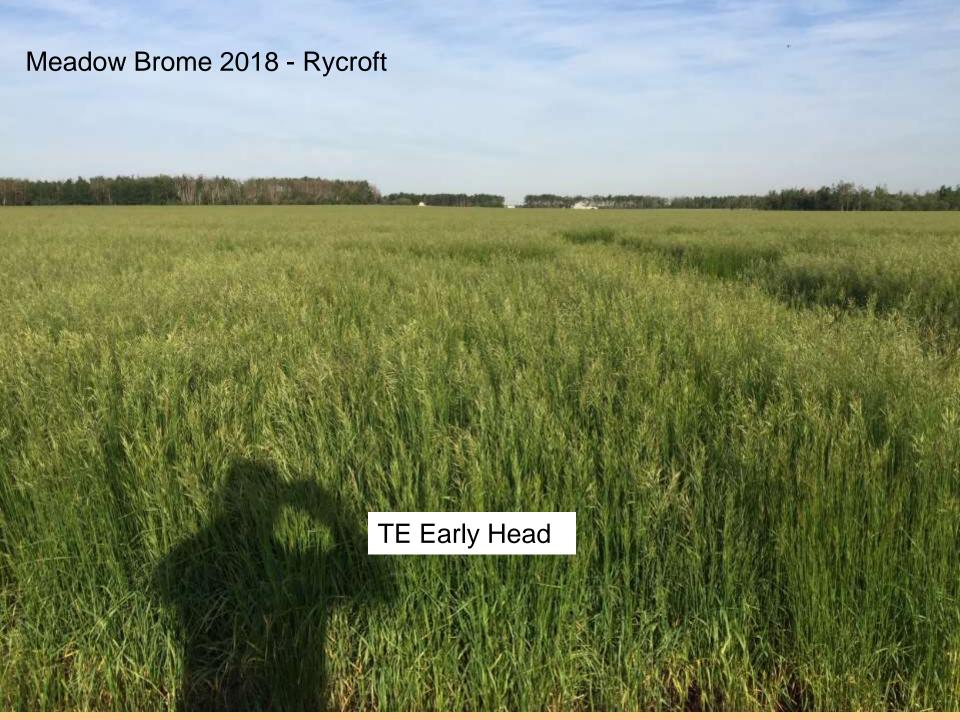
2017

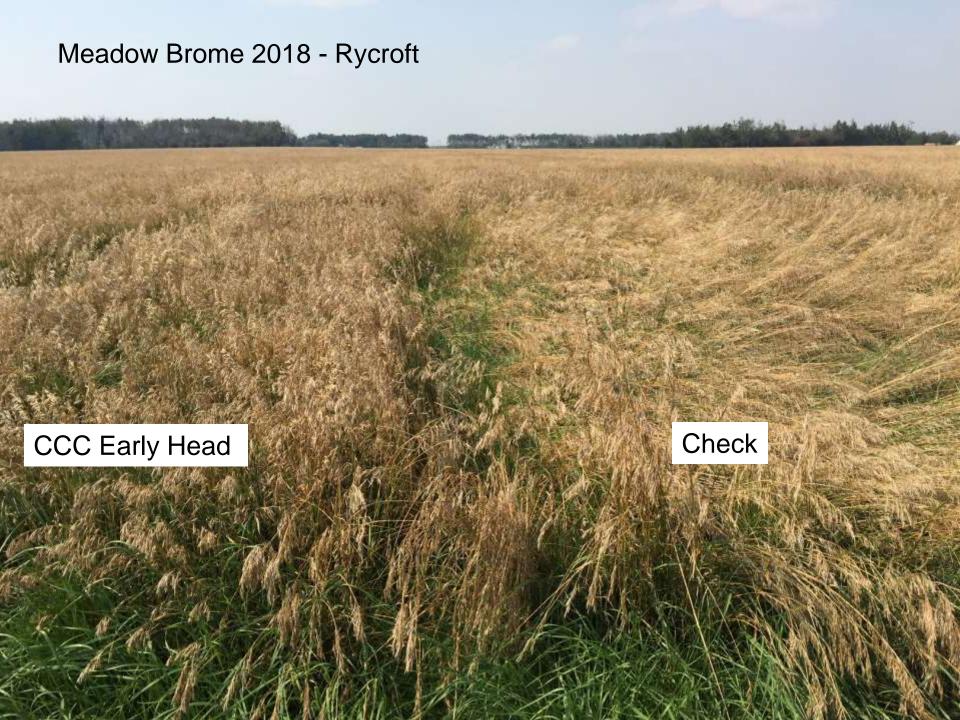
- STAGE 1: Applied on May 28th at 2 node to boot stage. Staging was on the late side.
- STAGE 2: Applied on June 7th at early heading.

2018

- STAGE 1: Applied on May 24th at 2 node.
- STAGE 2: Applied on June 3rd at early heading.


Harvested on August 16^{th} , 2017 and August 15^{th} in 2018 from an area of 17 m²


TE + CCC on Meadow Bromegrass (Rycroft 2017)

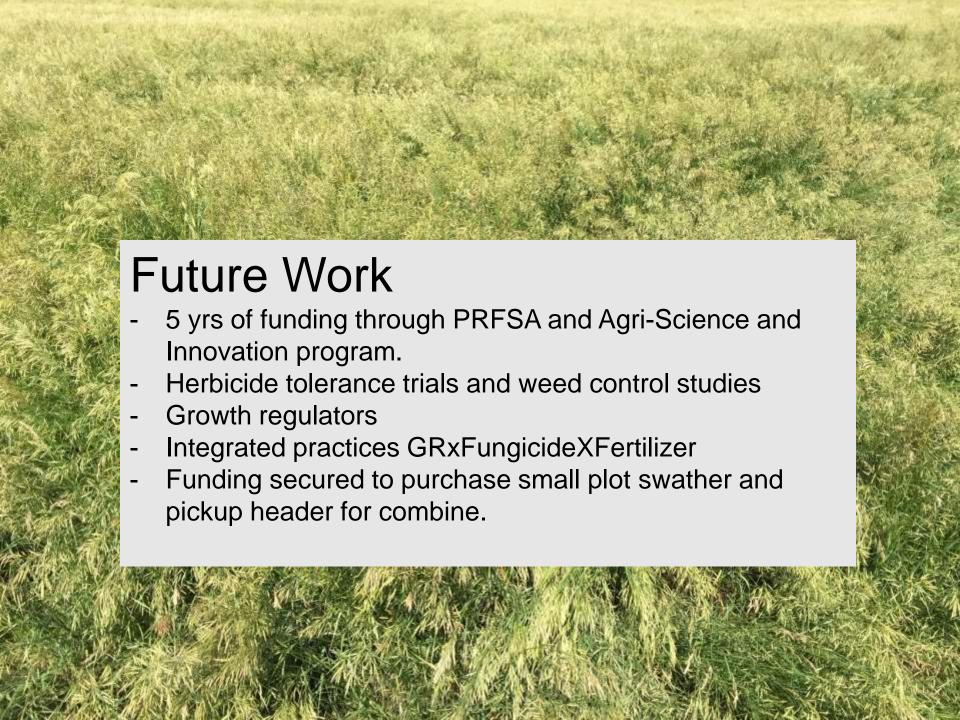

Treatments kg ai/ha	Stage	Plant Height cm	Lodging 0 – 10 (10 Is No Lodging)			Seed Yield kg/ha	Dockage %
			July 10	July 20	August 14		
TE 0.200	2 Node	126	9.8 a	6.8 a	8.9 a	1537 a	14.2 bc
TE 0.100+ CCC 0.560	2 Node	125	10.0 a	8.0 a	9.8 a	1572 a	13.5 c
CCC 1.116	2 Node	127	7.6 a	4.3 b	5.8 a	1282 ab	15.5 b
TE 0.200	Heading	128	9.0 a	8.0 a	6.3 a	1320 ab	15.7 b
CCC 1.116	Heading	131	8.4 a	4.5 b	7.3 ab	1290 ab	14.8 bc
Check		130	4.1 b	3.0 c	3.6 c	1092 b	17.7 a
CV%		3.2	17.9	13.2	18.9	11.3	5.1
LSD P=.05			2.1	1.2	2.1	232	1.2

Means followed by the same letter do not significantly differ (P=.05 Student-Newman-Keuls)

TE and CCC on Meadow Brome – Rycroft 2018

TE + CCC on Meadow Bromegrass (Rycroft 2018)

Treatments kg ai/ha	Stage	Plant Height cm	Lodging 0 – 10 (10 Is No Lodging)			Seed Yield kg/ha	Dockage %	Seed Moisture %
		July 12	July 12	August 1	August 15			
TE 0.200	2 Node	33.5 bc	10.0 a	9.8 a	10.0 a	1016	3.7 bc	11.4 b
TE 0.100+ CCC 0.560	2 Node	30.6 c	10.0 a	10.0 a	10.0 a	966	3.5 bc	11.9 b
CCC 1.116	2 Node	37.2 b	9.6 a	8.8 a	9.8 a	1095	4.4 bc	12.0 b
TE 0.200	Heading	35.7 b	10.0 a	9.6 a	10.0 a	1065	3.3 c	11.7 b
CCC 1.116	Heading	39.4 a	9.0 a	8.5 a	9.4 a	1176	5.2 b	12.3 b
Check		42.6 a	6.4 b	5.5 a	7.0 b	910	7.2 a	14.1 a
CV%		6.7	10.3	10.2	9.9	13.6	9.7	8.6
LSD P=.05		3.7	1.4	1.3	1.4	NSD	1.7	1.6


TE + CCC on Meadow Bromegrass (Valhalla 2017)

Treatments kg ai/ha	Stage	Plant Height cm	Lodging 0 – 10 (10 ls No Lodging)		Seed Yield kg/ha	Seed Moisture %
			July 6 July 27		Au	gust 7
TE 0.200	2 Node	81 c	10.0	9.8 a	867 b	16.3 bc
TE 0.100+ CCC 0.560	2 Node	86 c	10.0	10.0 a	921 b	18.0 b
CCC 1.116	2 Node	103 b	10.0	8.8 a	1064 a	14.0 d
TE 0.300	2 Node	64 d	10.0	9.6 a	627 c	20.2 a
Check		114 a	10.0	5.5 a	878 b	15.3 cd
CV%		3.5		10.2	7.3	6.7
LSD P=.05		.53		1.3	98.4	1.7

NEXT STEPS

- TE alone or in tank mix with CCC may have potential on grasses but will depend on yield potential of the stand and moisture conditions.
- TE shows good potential for use on red clover seed crops. CCC does not appear to be effective on red clover.
- Require more data over a number of years and environmental conditions.
- Timing of GR is similar to herbicide applications so should investigate the interaction.
- Field demonstrations should be conducted.

THANKS

- Peace Region Forage Seed Association
- AAFC AgriScience and Innovation
- Nitya Khanal, Rahman Azooz, Pat Gansevles (AAFC Beaverlodge)
- Talon Gauthier, PRFSA
- Smoky Applied Research and Demonstration Association

Calvin Yoder Forage Seed Specialist AAF Spirit River 780 864 3879 Calvin.yoder@gov.ab.ca

